Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Area-level models for small area estimation typically rely on areal random effects to shrink design-based direct estimates towards a model-based predictor. Incorporating the spatial dependence of the random effects into these models can further improve the estimates when there are not enough covariates to fully account for the spatial dependence of the areal means. A number of recent works have investigated models that include random effects for only a subset of areas, in order to improve the precision of estimates. However, such models do not readily handle spatial dependence. In this paper, we introduce a model that accounts for spatial dependence in both the random effects as well as the latent process that selects the effects. We show how this model can significantly improve predictive accuracy via an empirical simulation study based on data from the American Community Survey, and illustrate its properties via an application to estimate county-level median rent burden.more » « less
-
Abstract The Rapid Carbon Assessment, conducted by the US Department of Agriculture, was implemented in order to obtain a representative sample of soil organic carbon across the contiguous US. In conjunction with a statistical model, the dataset allows for mapping of soil carbon prediction across the US; however, there are two primary challenges to such an effort. First, there exists a large degree of heterogeneity in the data, whereby both the first and second moments of the data generating process seem to vary both spatially and for different land-use categories. Second, the majority of the sampled locations do not actually have laboratory-measured values for soil organic carbon. Rather, visible and near-infrared (VNIR) spectra were measured at most locations, which act as a proxy to help predict carbon content. Thus, we develop a heterogeneous model to analyze this data that allows both the mean and the variance to vary as a function of space as well as land-use category, while incorporating VNIR spectra as covariates. After a cross-validation study that establishes the effectiveness of the model, we construct a complete map of soil organic carbon for the contiguous US along with uncertainty quantification.more » « less
-
Abstract Time series classification using novel techniques has experienced a recent resurgence and growing interest from statisticians, subject‐domain scientists, and decision makers in business and industry. This is primarily due to the ever increasing amount of big and complex data produced as a result of technological advances. A motivating example is that of Google trends data, which exhibit highly nonlinear behavior. Although a rich literature exists for addressing this problem, existing approaches mostly rely on first‐ and second‐order properties of the time series, since they typically assume linearity of the underlying process. Often, these are inadequate for effective classification of nonlinear time series data such as Google Trends data. Given these methodological deficiencies and the abundance of nonlinear time series that persist among real‐world phenomena, we introduce an approach that merges higher order spectral analysis with deep convolutional neural networks for classifying time series. The effectiveness of our approach is illustrated using simulated data and two motivating industry examples that involve Google trends data and electronic device energy consumption data.more » « less
An official website of the United States government
